Solving a Quadratic Equation by Completing the Square

Example: $2x^2 - 3x + 9 = 0$

Step 1: If the coefficient of x^2 is 1, the go to Step 2. Otherwise, divide (or factor out) all terms by the coefficient of x^2 .

$$\frac{2}{2}x^2 - \frac{3}{2}x + \frac{9}{2} = \frac{0}{2}$$
$$x^2 - \frac{3}{2}x + \frac{9}{2} = 0$$

Step 2: Isolate all variable terms on one side of the equation.

$$x^2 - \frac{3}{2}x = -\frac{9}{2}$$

- **Step 3:** Complete the Square for the resulting binomial by using the following two sub-steps:
 - a.) Multiply the coefficient of the *x* term by $\frac{1}{2}$ $-\frac{3}{2} * \frac{1}{2} = -\frac{3}{4}$
 - b.) Square the result of a.) and add it to both sides of the equation.

$$\left(-\frac{3}{4}\right)^2 = \frac{9}{16}$$

$$x^2 - \frac{3}{2}x + \frac{9}{16} = -\frac{9}{2} + \frac{9}{16}$$

Note: the left side is now a *Perfect Square Trinomial (P.S.T.)*.

Step 4: Factor the resulting P.S.T. by writing it as the square of a Binomial.

$$\left(x-\frac{3}{4}\right)^2=-\frac{63}{16}$$

Step 5: Use the *Square Root Property* to solve for *x*.

$$\sqrt{\left(x - \frac{3}{4}\right)^2} = \pm \sqrt{-\frac{63}{16}}$$
$$x - \frac{3}{4} = \pm i \frac{\sqrt{63}}{\sqrt{16}}$$
$$x - \frac{3}{4} = \pm i \frac{3\sqrt{7}}{4}$$
$$x = \frac{3}{4} \pm \frac{3}{4}\sqrt{7} \text{ or } x = \frac{3 \pm i 3\sqrt{7}}{4}$$

Step 6: Check!

Also, see the following Wikipedia link: <u>https://en.wikipedia.org/wiki/Completing_the_square</u>