Solving a Quadratic Equation by Completing the Square

Example: $2 x^{2}-3 x+9=0$

Step 1: If the coefficient of x^{2} is 1 , the go to Step 2. Otherwise, divide (or factor out) all terms by the coefficient of x^{2}.
$\frac{2}{2} x^{2}-\frac{3}{2} x+\frac{9}{2}=\frac{0}{2}$
$x^{2}-\frac{3}{2} x+\frac{9}{2}=0$
Step 2: Isolate all variable terms on one side of the equation.

$$
x^{2}-\frac{3}{2} x=-\frac{9}{2}
$$

Step 3: Complete the Square for the resulting binomial by using the following two sub-steps:
a.) Multiply the coefficient of the x term by $\frac{1}{2}$

$$
-\frac{3}{2} * \frac{1}{2}=-\frac{3}{4}
$$

b.) Square the result of a.) and add it to both sides of the equation.

$$
\left(-\frac{3}{4}\right)^{2}=\frac{9}{16}
$$

$x^{2}-\frac{3}{2} x+\frac{9}{16}=-\frac{9}{2}+\frac{9}{16}$
Note: the left side is now a Perfect Square Trinomial (P.S.T.).
Step 4: Factor the resulting P.S.T. by writing it as the square of a Binomial.

$$
\left(x-\frac{3}{4}\right)^{2}=-\frac{63}{16}
$$

Step 5: Use the Square Root Property to solve for x.

$$
\begin{aligned}
& \sqrt{\left(x-\frac{3}{4}\right)^{2}}= \pm \sqrt{-\frac{63}{16}} \\
& x-\frac{3}{4}= \pm i \frac{\sqrt{63}}{\sqrt{16}} \\
& x-\frac{3}{4}= \pm i \frac{3 \sqrt{7}}{4} \\
& x=\frac{3}{4} \pm \frac{3}{4} \sqrt{7} \text { or } x=\frac{3 \pm i 3 \sqrt{7}}{4}
\end{aligned}
$$

Step 6: Check!

Also, see the following Wikipedia link: https://en.wikipedia.org/wiki/Completing_the_square

